

автономная некоммерческая образовательная организация высшего образования Центросоюза Российской Федерации «Сибирский университет потребительской кооперации»

Методические указания и задания по выполнению практических и самостоятельных работ по дисциплине:

БД. 07 Астрономия

для обучающихся среднего профессионального образования по специальности 40.02.02 Правоохранительная деятельность

Новосибирск 2023

Методические указания и задания по выполнению практических и самостоятельных работ по дисциплине «Астрономия» для обучающихся среднего профессионального образования направления подготовки 40.02.02 Правоохранительная деятельность / [сост. Ю.А. Канушина, канд. техн. наук, доцент]; АНОО ВО Центросоюза СибУПК. – Новосибирск, 2023г. – 14 с.

Рецензент: Е.Г. Шеметова, канд. техн. наук, доцент кафедры технологии производства и переработки сельскохозяйственной продукции

Методические указания и задания утверждены и рекомендованы к использованию в учебном процессе кафедрой технологии производства и переработки сельскохозяйственной продукции, протокол от 25 января 2023 г. № 5.

© Сибирский университет потребительской кооперации, 2023

СОДЕРЖАНИЕ

1. Общие положения	4
2. Темы и их краткое содержание	5
3. Методические указания и задания к практическим занятиям и самостоятельной работе	.8
4. Библиографический список	25
5. Современные профессиональные базы данных и информационные ресур	сы
сети интернет	25
6. Учебно-методическое обеспечение	5

1. ОБЩИЕ ПОЛОЖЕНИЯ

Место дисциплины в структуре программы подготовки специалистов среднего звена: Базовые дисциплины

Цели и задачи дисциплины – требования к результатам освоения дисциплины:

личностные результаты освоения учебной дисциплины:

- сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;
- навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

метапредметные результаты освоения учебной дисциплины:

- владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;
- готовность и способность к самостоятельной информационнопознавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

предметные результаты освоения учебной дисциплины:

- сформированность представлений о строении Солнечной системы, эволюции звезд и Вселенной, пространственно-временных масштабах Вселенной;
 - понимание сущности наблюдаемых во Вселенной явлений;
- владение основополагающими астрономическими понятиями, теориями, законами и закономерностями, уверенное пользование астрономической терминологией и символикой;
- сформированность представлений о значении астрономии в практической деятельности человека и дальнейшем научно-техническом развитии;
- осознание роли отечественной науки в освоении и использовании космического пространства и развитии международного сотрудничества в этой области.

2. ТЕМЫ И ИХ СОДЕРЖАНИЕ

Тема 1. Методы астрономических исследований.

Спектральные методы. Диапазоны электромагнитных излучений. Сравнительная вредность излучений. Связь частоты излучения с длиной волны, жесткостью и мягкостью. Законы Стефана-Больцмана, Вина, Доплера. Связь яркости и спектра излучения звезд с их температурой. Определение времени прохождения сигнала до космических объектов.

Тема 2. Эволюция астрономических представлений о Вселенной

Геоцентрическая и гелиоцентрические картины устройства Вселенной. Законы Кеплера. Теория большого взрава. Красное смещение. Разбегание галактик.

Тема 3. Строение Солнечной системы

Схожесть строения Солнечной системы и атома. Законы Коперника и Кеплера. Внутренние и внешние планеты. Особенности строения и свойств планет Солнечной системы. Определение ускорения силы тяжести на разных планетах.

Тема 5. Эволюция звезд.

Сжатие газовых облаков под действием гравитации. Достижение температуры, необходимой для ядерного синтеза. Время жизни. Красные гиганты, былые карлики, нетронные звезды, черные и белые дыры.

Тема 6. Строение и масштабы Вселенной.

Планетарные системы, звездные системы, галактики, метагалактики. Расширение Вселенной. Красное смещение спектральных линий, наблюдаемое со всех точек Земли. Время прохождения сигналов с Земли до других галактик. Перспективы межзвёздных космических путешествий.

3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ И САМОСТОЯТЕЛЬНОЙ РАБОТЕ

Практическое занятие 1 ОЦЕНИВАНИЕ РАССТОЯНИИ И РАЗМЕРОВ ОБЪЕКТОВ ВО ВСЕЛЕННОЙ

ЦЕЛЬ: Идентифицировать космические объекты по их снимкам или иллюстрациям; систематизировать космические объекты по их удалённости от поверхности Земли; по их размерам.

ПРИБОРЫ И МАТЕРИАЛЫ: Фотографии космических объектов, планшет или персональный компьютер с доступом в Интернет.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Наряду с традиционными астрономическими объектами в поле деятельности астрономов сегодня находятся и искусственно созданные объекты — спутники, космические станции, космические аппараты. Астрономические объекты (небесные тела) и космические аппараты, находящиеся за пределами земной атмосферы в космическом пространстве, называют космическими объектами.

ХОД РАБОТЫ:

Внимательно рассмотрите фотографии космических объектов.

- 1. Определите, какие космические объекты изображены на снимках (укажите тип объекта и, если это возможно, его название).
- 2. Систематизируйте объекты в порядке увеличения их размеров от меньших к большим (запишите названия объектов или их номера).
- 3. Расположите объекты по их удалённости от поверхности Земли: от самых близких до самых далёких (запишите названия объектов или их номера).
- 4. Запишите последовательность объектов, сортируя их по удалённости от поверхности Солнца. Укажите возможные варианты в изменении порядка объектов при такой сортировке.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Перечислите объекты (не менее 7), которые изучает астрономия.
- 2. Какие из перечисленных объектов вы могли бы наблюдать невооружённым глазом?

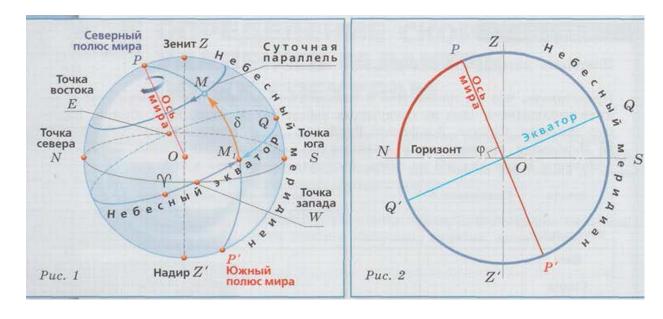
Практическое занятие 2 ПОСТРОЕНИЕ ГРАФИЧЕСКИХ МОДЕЛЕЙ НЕБЕСНОЙ СФЕРЫ

Цель: Построить графические модели небесной сферы для заданного пункта наблюдения.

ПРИБОРЫ И МАТЕРИАЛЫ: Циркуль, цветные карандаши, линейка, транспортир.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

У древних народов звёздное небо ассоциировалось с куполом, или со сферой. Действительно, при взгляде на небо создаётся впечатление, что Солнце, звёзды, Луна и другие небесные тела расположены на внутренней поверхности гигантской небесной сферы, вращающейся в направлении с востока на запад. Поэтому для описания положений небесных тел на небе и было введено понятие небесной сферы.


Небесной сферой называется воображаемая сфера произвольного радиуса с центром в точке наблюдения (точка О), на которую проецируются астрономические объекты. Графическая модель небесной сферы для наблюдателя, находящегося в Северном полушарии Земли, представлена на рисунке 1.

Мы определили небесную сферу как сферу произвольного радиуса. Глядя на небо, мы не можем определить, какая из звёзд находится дальше, какая — ближе. Нам кажется, что все они одинаково удалены и расположены на небесном куполе, окружающем наблюдателя. Поэтому мы и не можем точно указать радиус небесной сферы и определяем его как произвольный. Это допустимо, так как небесная сфера — это воображаемая, или условно выбранная. сфера, в центре которой находится точка наблюдения. К тому же для решения многих задач практической астрономии важно знать не реальные расстояния до небесных объектов, а их взаимное расположение на небе, для определения которого измеряют углы между направлениями от точки наблюдения на эти объекты. Эти измерения удобно производить именно на воображаемой небесной сфере, используя специальные системы координат.

Небесная сфера вращается вокруг воображаемой линии PP\ называемой осью мира. Ось мира параллельна оси вращения Земли. Соответственно, Р — северный полюс мира, Р' — южный полюс мира (см. рис. 1).

Для определения основных элементов небесной сферы в астрономии используют понятие большого и малого кругов. Большим кругом называют окружность, которая получается при пересечении небесной сферы плоскостью, проходящей через её центр. Если плоскость не проходит через центр, то получается малый круг.

Большой круг небесной сферы, плоскость которого перпендикулярна оси мира, называется небесным экватором (см. рис. 1). Небесным меридианом называется большой круг небесной сферы, проходящий через зенит Z, надир Z' и полюсы мира P и P' (см. рис. 1).

Прямая линия, которая совпадает в данной точке с направлением действия силы тяжести, называется *отвесной линией*. Направление отвесной линии можно определить с помощью простейшего отвеса — грузика на тонкой нити. Отвесная линия пересекает небесную сферу в двух точках: верхняя (над головой наблюдателя) **Z** называется *зенитом*, нижняя **Z'** — *надиром* (см. рис. 1).

Большой круг небесной сферы, плоскость которого перпендикулярна отвесной линии, называется *математическим горизонтом*. Математический горизонт пересекается с небесным меридианом в точках севера N (находится ближе к северному полюсу мира) и юга S, а с небесным экватором — в точках востока E и запада W (см. рис. 1).

Выберем на небесной сфере астрономический объект (такие объекты на небесной сфере принято называть *светило*). В течение суток светило описывает на небесной сфере малый круг, который называется *суточной паралле-лью* (см. рис. 1).

Для изучения видимого расположения и движения небесных объектов используют различные *системы небесных координат* (горизонтальную и экваториальную).

Зная широту места наблюдения ср и склонение 5 небесного объекта, можно определить его высоту над горизонтом в момент кульминаций. Для наблюдателя в Северном полушарии Земли ($\phi > 0$) объект, у которого склонение 5 < ϕ , кульминирует к югу от зенита. Его высота в верхней кульминации

$$h_B = 90^{\circ} - \phi + 6.$$

Если $6 > \phi$, объект кульминирует к северу от зенита, его высота

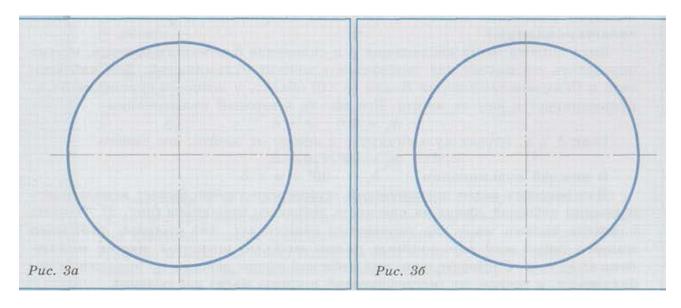
$$h_n = 90^{\circ} + \phi - 6.$$

В нижней *кульминации* $h_H = -90" + \phi + 5$.

Для решения задач практической астрономии удобно бывает использовать проекции небесной сферы на плоскость небесного меридиана (рис. 2). Теорема о высоте полюса мира над горизонтом утверждает, что высота видимого полюса мира над горизонтом равна модулю широты места наблюдения: $fi_P = ! \phi 1$. Следовательно, вид небесной сферы зависит от положения наблюдателя, а точнее, от географической широты места наблюдения.

Представьте, что вы находитесь в таком месте земной поверхности, где в зените наблюдается одна из следующих звёзд: Бетельгейзе, Вега, Спика, Канопус, Антарес, Сириус., Альферац, Рукбах.

Используя Интернет или подвижную карту звёздного неба, определите склонение 5 для каждой из звёзд. Результаты занесите в таблицу.


Звезда	Склонение 5	Широта ф места наблюдения, где звезда наблюдает- ся в зените
Бетельгейзе		
Вега		
Спика		
Канопус		
Антарес		
Сириус		
Альферац		
Рукбах		

Определите широты <р мест наблюдения, где в зените наблюдаются указанные звёзды. Результаты занесите в таблицу.

Подсказка: высота светила, находящегося в зените, равна 90°.

На рисунках За и 36 постройте проекции небесной сферы для мест земной поверхности, где в зените наблюдаются две (по выбору учителя) из вышеуказанных звёзд:

■ Обозначьте центр небесной сферы O, точки зенита Z и надира Z'.

 \blacksquare На линии горизонта обозначьте точки севера N и юга S.

III Отметьте положения северного P и южного P' полюсов мира.

Подсказка: воспользуйтесь теоремой о высоте полюса мира над горизонтом. Обратите внимание: для наблюдателя в Северном полушарии Земли над горизонтом расположен северный полюс мира. в Южном — южный полюс мира. Ж Проведите линию РОР\ изображающую ось мира.

Н Постройте линию, изображающую небесный экватор QQ'.

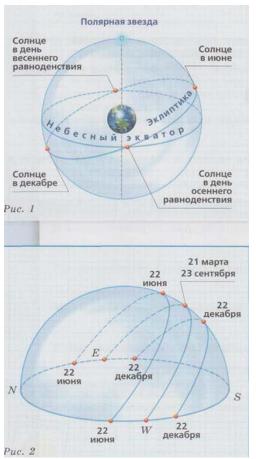
Используя построенные модели небесных сфер, определите высоту h_Q точки Q пересечения небесного экватора с небесным меридианом, лежащей над плоскостью математического горизонта.

На построенных моделях изобразите, используя цветные карандаши, суточные параллели звезды, которая в данной точке наблюдения является:

- незаходящей;
- невосходящеи;
- восходящей и заходящей.

ВОПРОСЫ ДЛЯ ЗАКРЕПЛЕНИЯ МАТЕРИАЛА

Какое склонение должна иметь звезда, если она кульминирует в зените в месте, где вы проживаете?


Выведите формулу для определения интервала склонения звёзд, которые в месте наблюдения с широтой:

- а) никогда не заходят
- б) никогда не восходя

Практическая работа 3 ИССЛЕДОВАНИЕ СУТОЧНОГО ВИДИМОГО ДВИЖЕНИЯ СОЛНЦА

ЦЕЛЬ: По фотографии суточного движения Солнца определить широту места, где производилась съёмка.

ПРИБОРЫ И МАТЕРИАЛЫ: Фотография суточного движения Солнца, карандаш, линейка.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Кажущееся вращение небесной сферы вокруг оси мира является следствием действительного вращения Земли вокруг своей оси. Наблюдатель, находящийся на поверхности Земли, видит, что в течение суток небесные тела перемещаются по небу. Суточным движением называется видимое движение светил, которое обусловлено вращением Земли вокруг своей оси.

Солнце, подобно звёздам, участвует в суточном движении: оно восходит в восточной части горизонта, описывает дугу на небе и заходит в западной части горизонта. В течение года Солнце перемещается среди

звёзд по эклиптике — большому кругу небесной сферы, наклонённому к небесному экватору под углом 23,5° (рис. 1). Поэтому экваториальные координаты Солнца а* и 5в изменяются в течение года.

Это интересно: название «эклиптика» (ecliptic) возникло потому, что только тогда, когда Луна (будучи в фазе новолуния или полнолуния) пересекает эклиптику, мы можем наблюдать ват мения (eclipse) Солнца или Луны.

Из-за изменения склонения Солнца его суточные пути на небе, точки восхода и захода меняются день ото дня. Также ежедневно изменяется по-

луденная высота Солнца (т.е. высота Солнца в верхней кульминации; рис. 2).

Как вы знаете, по известным широте места наблюдения <р и склонению 8 небесного объекта можно определить его высоту над горизонтом в момент кульминации.

Запишите формулу для вычисления полуденной высоты Солнца, если наблюдатель находится в пункте, географическая широта которого:

Используя полученную вами формулу, можно вычислить широту места наблюдения. Для этого нужно измерить высоту Солнца в кульминации. Конечно же нужно знать дату, когда эти измерения проводились!

Выведите формулу, по которой можно вычислить широту места наблюдения, если известны полуденная высота Солнца /г® и его склонение 68:

Склонение Солнца можно определить по подвижной карте звёздного неба либо найти в астрономическом ежегоднике. Также можно использовать любую доступную программу-планетарий (например, Stellarium).

Если в течение одного дня с фиксированной позиции делать снимки Солнца через равные промежутки времени, а затем смонтировать полученные фотографии на одном изображении, то мы получим дневной трек Солнца (рис. 3). Зная дату фотосъёмки, по этому изображению можно примерно определить высоту Солнца в кульминации. Определив склонение Солнца 5Э, можно вычислить широту места, где проводилась данная фотосъёмка.

ХОД РАБОТЫ:

На рисунке 3 представлен суточный трек Солнца, смонтированный из реальных снимков (фото Д.Ю. Клыкова). На фото представлены 12 изображений Солнца с интервалом в 1 час. Точки восхода и захода отмечены стрелками. Первое изображение Солнца снято через 30 минут после восхода, последнее — за 30 минут до захода.

Рисунок 3

Определите продолжительность дня фотосъёмки.

Исходя из продолжительности дня, определите примерную дату фотосъёмки.

Соответствует ли дата съёмки (примерно) одному из дней равноденствия или солнцестояния? Если да, то какому?

На рисунке отметьте стороны света.

Измерьте линейкой расстояние между точками восхода и заката (помечены стрелками) в миллиметрах: гиоаил.аакят.ым =

Определите, чему равно угловое расстояние между точками восхода и заката в данную дату:

Примечание: угловое расстояние между точками восхода и заката равно угловой мере дуги математического горизонта между этими точками.

На снимке измерьте линейкой высоту Солнца в верхней точке трека (в кульминации) в миллиметрах: Лкульм.мм =

Рассчитайте высоту Солнца в кульминации в градусах ^кульм-град* Для этого составим пропорцию: ,

"кульм-град ^'»огхол-щкат-грал

"кульмы* Люсхав-яошт-мы

Вычислите широту места наблюдения:

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

Почему происходит смена времён года?

В какие даты Солнце восходит точно на востоке и заходит точно на западе? Можно ли на территории России увидеть Солнце в зените?

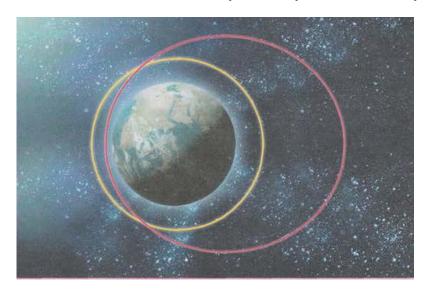
Практическая работа 4 ИССЛЕДОВАНИЕ ДВИЖЕНИЯ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ

ЦЕЛЬ: Рассчитать скорости движения спутников по круговым и эллиптическим орбитам, определить условия, при которых спутники могут столкнуться, оценить последствия возможного столкновения спутников.

ПРИБОРЫ И МАТЕРИАЛЫ: Рисунок орбит спутников, калькулятор.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Согласно первому обобщённому закону Кеплера под действием силы притяжения одно небесное тело движется в поле тяготения другого небесного тела по одному из конических сечений — окружности, эллипсу, параболе или гиперболе. Движение искусственных спутников Земли (ИСЗ) также подчиняется этому закону. Мы рассмотрим ИСЗ, которые имеют круговые и эллиптические орбиты. Скорость спутника на круговой орбите находится по формуле


При движении по эллиптической орбите скорость спутника будет меняться: скорость тем больше, чем ближе спутник к Земле. Среднее расстояние от спутника до центра Земли равно большой полуоси а эллипса. Используя закон сохранения энергии и третий закон Кеплера, получаем формулу для расчёта скорости движения небесного тела по эллиптической орбите:

Радиус орбиты /'«-путника отсчитывается от центра Земли, поэтому если указана высота h орбиты спутника над поверхностью Земли, то

ХОД РАБОТЫ:

На рисунке показаны орбиты двух спутников. Спутник № 1 движется по круговой орбите на высоте 2000 км от поверхности Земли. Орбита

спутника №2 — эллипс с большой полуосью 9000 км. Плоскости орбит и направление движения совпадают. Могут ли спутники столкнуться?

Подпишите номера спутников на рисунке. Отметьте стрелками места возможных столкновений.

Не производя вычислений, определите, какой спутник (№ 1 или № 2) имеет большую скорость в местах возможного столкновения. Ответ поясните.

Определите радиус орбиты R спутника № 1 в метрах.

Вычислите скорость спутника № 1 в метрах в секунду.

Определите, на каком расстоянии г от центра Земли находился спутник № 2 в момент столкновения (ответ дайте в метрах).

Вычислите скорость спутника № 2 в метрах в секунду.

Рассчитайте скорость сближения спутников в метрах в секунду.

Указание: скорость сближения равна отношению изменения расстояния между телами ко времени, за которое расстояние изменялось. Так как угол между касательными к орбитам в точке столкновения мал, им можно пренебречь и считать, что спутники в момент столкновения движутся по одной, прямой

Используя дополнительные источники информации, в том числе ресурсы Интернета, сравните полученную скорость со скоростью движения различных транспортных средств (автомобиль, самолёт, ракета и т.п.).

Сделайте выводы о возможных последствиях такого предполагаемого «космического транспортного происшествия».

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

- 1. Человек на космической станции находится в состоянии невесомости. Действует ли на него притяжение Земли?
- 2. Почему спутник, обращаясь вокруг Земли, не падает на её поверхность?
- 3. На каких орбитах могут находиться искусственные спутники, совершающие обороты вокруг Земли? Отметьте правильные варианты:
- круговые;
- эллиптические,
- близкие к круговым;
- эллиптические;
- параболические; гиперболические.
- 4. Какой из двух спутников с меньшей или с большей полуосью орбиты будет иметь больший период обращения?
- 5. Почему на одном расстоянии от центра Земли в рассмотренной задаче спутники имели разную скорость?

Практическая работа 5 ИЗУЧЕНИЕ ВУЛКАНИЧЕСКОЙ АКТИВНОСТИ НА СПУТНИКЕ ЮПИТЕРА ИО

ЦЕЛЬ: Определить высоту и скорость выброса вещества из жерла вулкана на спутнике Юпитера Ио.

ПРИБОРЫ И МАТЕРИАЛЫ: Фотография Ио с извергающимся вулканом, линейка.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Ближайший к Юпитеру крупный спутник Ио имеет радиус R = 1820 м и массу M = 7,3 • 10" кг. Космические станции (Вояджер 1 и Вояджер 2) неоднократно фотографировали Ио и обнаружили на нём несколько извергающихся вулканов, что указывает на высокие температуры в недрах спутников. Основным механизмом разогрева вещества внутри Ио является приливное воздействие со стороны Юпитера, которое периодически де-

формирует его внешние слои, разогревая их. На фотографии показан действующий вулкан, который извергает вещество на большую высоту.

ХОД РАБОТЫ:

Определите масштаб снимка, учитывая, что радиус Ио равен 1820 км.

Измерьте высоту выброса в миллиметрах и с помощью масштаба рассчитайте реальную высоту выброса в километрах.

По массе и радиусу определите ускорение свободного падения на поверхности спутника.

Используя закон сохранения энергии, определите скорость выброса вещества из жерла вулкана.

Используя дополнительные источники информации, в том числе ресурсы Интернета, сравните полученную скорость со скоростью извержения вещества в земных вулканах. Результаты сравнения оформите в виде таблицы.

Скорость извержения вещества в земных вулканах Скорость выброса вещества из жерла вулкана на Ио

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

- 1. Как связана вулканическая активность Ио с почти полным отсутствием ударных кратеров на его поверхности, столь характерных для Луны и спутников других планет?
- 2. На Земле вулканическая активность связана с выделением тепла при распаде радиоактивных элементов внутри неё, а какой процесс, по современным представлениям, плавит недра Ио?

Практическая работа 6 ПОСТРОЕНИЕ ДИАГРАММЫ ГЕРЦШПРУНГА—РЕССЕЛА И ЕЁ АНАЛИЗ

ЦЕЛЬ: Построить диаграмму температура—светимость и установить взаимосвязь между характеристиками звёзд.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Звёзды — огромные газовые шары, которые находятся очень далеко от Земли. Единственным источником информации о далёких звёздах является их излучение. Уже в середине XIX в. астрономы научились определять физические характеристики звёзд по данным их наблюдений, и к началу XX в. накопились данные о десятках тысяч звеёзд. Но как наблюдаемые характеристики звёзд — звёздная величина или светимость, спектральный класс — связаны с их физическими характеристиками?

В начале XX в. астрономы Эйнар Герцшпрунг (Дания) и Генри Норис Рессел (США) построили теоретические графики, которые связывали две основные характеристики звезды: светимость и спектральный класс. Учёные расположили звёзды на диаграмме, по вертикальной оси которой откладывали светимость звезды, а по горизонтальной — её спектральный класс. Оказалось, что звёзды на этой диаграмме располагаются не беспорядочно, а образуют определённые группы.

Известно, что спектр звезды зависит от температуры. Поэтому на горизонтальной оси диаграммы откладывают либо спектральный класс звезды, либо её температуру. В последнем случае ось шкалы температур принято направлять справа налево, т.е. температура по горизонтальной оси убывает. Подобное построение — это дань традиции, чтобы диаграмма имела такой же вид, как и построенная Герцшпрунгом и Ресселом.

В честь первооткрывателей диаграмму называют их именами: диаграмма Герцшпрунга—Рессела. Но наряду с этим используют и другие названия: диаграмма спектр—светимость или температура—светимость, в зависимости от того, какие величины откладывают по горизонтальной и вертикальной осям диаграммы.

Исследование диаграммы Герцшпрунга—Рессела является важнейшим источником сведений об эволюции звёзд. По положению звезды на диаграмме определяют и каков её дальнейший «жизненный путь». С помощью диаграммы можно определить абсолютную звёздную величину звезды и оценить расстояние до неё. Кроме того, диаграмма спектр—светимость позволяет оценить основные характеристики звёзд, не прибегая к долгим утомительным вычислениям.

Более подробные сведения о диаграмме Герцшпрунга—Рессела вы можете найти в «Астронет»: http://www.astronet.ru/db/msg/1191489.

ХОД РАБОТЫ:

В таблице даны характеристики звёзд: температура T (в K), светимость, выраженная в светимостях Солнца (светимость Солнца принята за 1).

№ п/п	Звезда	<i>T</i> _{<i>y</i>} K	Lv/L
1	Солнце	5800	1
2	<i>а</i> Центавра А	5800	1,3
3	<i>а</i> Центавра В	4100	0,36
4	Барнарда	2800	0,0004
5	Сириус А	10 400	23
6	Сириус В	10 700	0,008
7	Процион А	6500	7,6
8	Процион В	7400	0,0005
9	Канопус	7400	1500
10	Арктур	4500	90
11	Вега	10 700	60
12	Капелла	5900	150
13	Ригель	11 800	40 000
14	Бетельгейзе	3200	17 000
15	Ахернар	14 300	200
16	Альтаир	8000	10
17	Альдебаран	4200	90
18	Спика	21 300	1900
19	Антарес	3400	4400

20	/П Пеней		40 000

Постойте диаграмму Герцшпрунга— Рессела для приведённых в таблице звёзд. По вертикальной оси откладывайте светимость (в светимостях Солнца), по горизонтальной — температуру. Горизонтальная шкала неравномерна.

Нанесите на диаграмму пунктиром главную последовательность.

Используя таблицу учебника «Спектральная классификация звёзд», постройте на диаграмме вертикальные цветные полосы, соответствующие цвету звёзд.

Отметьте на диаграмме области, где расположены красные гиганты, белые карлики, сверхгиганты.

Как будут выглядеть на диаграмме температура—светимость линии, вдоль которых располагаются звёзды одинакового радиуса?

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

- 1. Какую зависимость между температурой звезды и её цветом вы можете установить, пользуясь построенной диаграммой?
- 2. Оцените температуру и цвет звезды главной последовательности спектрального класса А. Приведите пример такой звезды.

Практическая работа 7 ОЦЕНИВАНИЕ ФОРМЫ ГАЛАКТИКИ МЕТОДОМ «ЗВЁЗДНЫХ ЧЕРПАКОВ»

ЦЕЛЬ: Познакомиться с методом «звёздных черпаков» и, используя его, охарактеризовать форму Галактики.

ПРИБОРЫ И МАТЕРИАЛЫ: Комплекты карт участков созвездий (по одному на группу учащихся), подвижная карта звёздного неба или любая другая карта неба, карандаш, компьютер, электронная таблица (Excel, OpenOffice.org Calc или подобная).

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

В ясную безлунную ночь на небе хорошо различима светлая полоса — Млечный Путь. Если вы внимательный наблюдатель, то наверняка заметили неодинаковую в разных местах яркость и клочковатую структуру этой полосы. А посмотрев на Млечный Путь в бинокль или телескоп, вы увидите огромное число звёзд, неразличимых невооружённым глазом.

Млечный Путь, который мы наблюдаем на небе в виде светлой полосы, опоясывающей всё небо, — это проекция нашей звёздной системы (Галактики) на небесную сферу. Можно ли, находясь внутри этого «звёздного острова», определить его форму и размер? Одним из первых, кто занимался систематическим исследованием этой проблемы, был английский астроном Вильям Гершель (1738—1822). Он использовал особый способ подсчёта звёзд в отдельно взятых небольших площадках, разбросанных по всему небу, — метод «звёздных черпаков». Гершель предположил, что ближе всего к Земле находятся самые яркие звёзды, а самыми далёкими являются, соответственно, самые слабые звёзды, с трудом различимые в телескоп (телескоп Гершеля позволял различать звёзды до 15-й звёздной величины). Исследуя площадки, которые находились но обе стороны и на разных угловых расстояниях от средней плоскости Млечного Пути, Гершель обнаружил, что число звёзд возрастает по мере приближения к Млечному Пути и достигает максимальных значений в самых ярких его областях.

В этой работе вы сможете повторить исследование Гершеля и сделать вывод о форме нашей Галактики.

ХОД РАБОТЫ:

Вам предстоит подсчитать количество звёзд заданной звёздной величины, используя комплекты карт участков различных созвездий. Для исследования выбраны участки неба равной площади, расположенные как вблизи Млечного

Пути, так и в отдалении от него. Каждый комплект содержит по 7 карт двух участков неба.

Для выполнения работы объединитесь группы (от 2 до 6 учащихся по указанию учителя).

В заголовке второго и третьего столбцов таблиц 1 и 2 допишите названия созвездий, карты которых входят в ваш рабочий комплект.

Подсчитайте количество звёзд до 9, 10, 11, 12, 13, 14-й звёздной величины для участков созвездий и результаты занесите в соответствующие столбцы таблицы 1.

Таблица 1

	Число звёзд					
До какой звёздной вели- чины	на участке в созвездии	на участке в созвездии				
9^{10}						
10^{10}						
11111						
12 ¹²						
13 ¹⁰						
14 ¹⁰						

Заполните таблицу 2.

Таблица 2

Ступени	Число звёзд							
звёздных ве- личин	на участке в созвездии	согласно теории						
9			4					
10			16					
11			64					
12			256					
13			1024					

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

1. В каком созвездии находится центр Галактики?

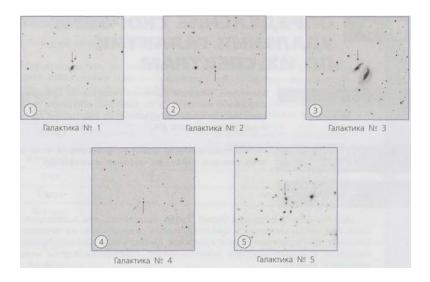
- 2. Где расположено Солнце в Галактике?
- 3. Что входит в состав Галактики?
- 4. В чём заключается метод «звёздных черпаков»?

Практическая работа 8-9 ОПРЕДЕЛЕНИЕ СКОРОСТИ УДАЛЕНИЯ ГАЛАКТИК ПО ИХ СПЕКТРАМ

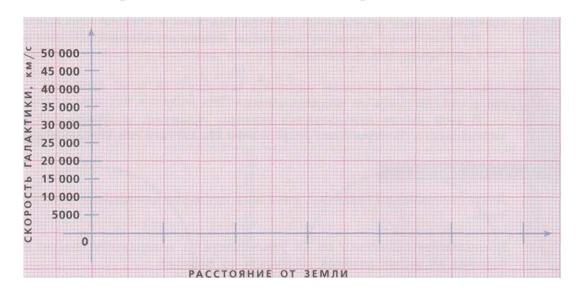
ЦЕЛЬ: Вычислить скорости удаления галактик по красному смещению линии H_a в их спектрах, построить график зависимости скорости удаления от расстояния до галактики и проанализировать его.

ПРИБОРЫ И МАТЕРИАЛЫ: Лабораторный спектр линии Н, фотографии пяти галактик и их спектры, карандаш, линейка, калькулятор.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:


Американский астроном Эдвин Хаббл обнаружил, что в спектрах далёких галактик линии смещены в красную сторону относительно их нормального положения. Это явление назвали красным смещением. Количественно красное смещение z характеризуется относительным изменением длины волны спектральных линий.

ХОД РАБОТЫ:


Даны изображения галактик, имеющих примерно одинаковые физические размеры.

Расположите галактики по их удалённости от поверхности Земли: от самых близких до самых далёких (запишите их номера).

Объясните, почему вы расположили галактики таким образом.

Подпишите номера галактик по их удалённости от Земли на горизонтальной оси диаграммы, считая, что в точке 0 расположена Земля.

На рисунках 1 и 2 показаны лабораторный спектр водорода (Н) и спектры галактик. Для каждого объекта спектры представлены и в виде горизонтальной цветовой полосы (результат разложения света в спектрографе), и в виде графика изменения интенсивности излучения от длины волны. Яркая красная линия в спектрах галактик — линия водорода На — смещена относительно лабораторного значения λ=656 нм.

Найдите линию водорода H_a в спектре каждой галактики и определите соответствующую длину волны X. Результат занесите в таблицу.

Посчитайте смещение спектральной линии $ДX = X - X_{H}$ и запишите результат в соответствующий столбец таблицы.

Вычислите z = результат занесите в таблицу.

Вычислите скорость удаления галактики $v = c \cdot r$ и запишите результат в последний столбец таблицы.

Галактика	Длина волны X водорода в спектре галактики, нм	Смещение спектральной линии ДХ	Красное смещение <i>z</i>	Скорость удаления га- лактики <i>Vy</i> км/с	Расстояние до галактики, млн св. лет
1					
2					
3					
4					
5					

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

- 1. В спектре галактики Андромеды наблюдается сдвиг спектральных линий в фиолетовую (коротковолновую) часть спектра. Какой вывод о движении этой галактики по отношению к нашей следует сделать на основании этого факта?
- 2. Какой физический смысл имеет постоянная Хаббла?
- 3. Используя закон Хаббла, определите максимальное расстояние, до которого можно наблюдать небесные тела.

Практическая работа 10 ОЦЕНИВАНИЕ ВОЗМОЖНОСТИ НАЛИЧИЯ ЖИЗНИ НА ЭКЗОПЛАНЕТАХ

ЦЕЛЬ: По снимкам экзопланет определить радиусы их орбит, вычислить температуру поверхности экзопланет и оценить возможность наличия жизни земного типа на них.

ПРИБОРЫ И МАТЕРИАЛЫ: Линейка с миллиметровыми делениями, карандаш, калькулятор.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ:

Планеты, обращающиеся вокруг других звёзд, называют экзопланетами. В настоящее время известно о многих тысячах экзопланет. И некоторые из них могут быть обитаемыми. Учёные считают, что жизнь земного типа возможна только тогда, если на поверхности планеты есть большое количество жидкой воды. Про такие планеты говорят, что они находятся в зоне обитаемости.

Для того чтобы определить, находится ли планета в зоне обитаемости, необходимо знать, сколько энергии планета получает от своей звезды. Как это оценить? Подобная задача предлагалась для решения десятиклассникам на практическом туре Санкт-Петербургской астрономической олимпиады в 2017 г. Воспользуемся методом, который предложен в решении этой задачи.

Будем считать, что планета поглощает как чёрное тело, её радиус Я, планета находится на расстоянии а от звезды, светимость которой L. На планете установится температура Т в том случае, если в единицу времени планета поглощает столько же энергии от звезды, сколько излучает сама. От своей звезды планета получает энергию.

Вместе с тем согласно закону Стефана—Больцмана планета излучает энергию.

Таким образом, для оценки температуры планеты необходимо знать светимость звезды L, вокруг которой обращается планета, и среднее расстояние от планеты до звезды а, выраженное в метрах.

Светимость звезды, выраженную в светимостях Солнца, можно вычислить, если известна абсолютная звёздная величина М звезды:

При оценке температуры планеты мы рассматривали её как абсолютно чёрное тело. Если планета подобна Земле, то поправочный коэффициент, определяемый альбедо Земли, будет порядка единицы. При вычислении температуры из этого коэффициента будет вычисляться корень 4-й степени, поэтому результат при таком допущении практически не изменится.

Кроме того, мы предполагали, что планета не имеет собственных источников энергии. Если это предположение ошибочно, то полученное описанным выше методом значение температуры планеты является минимально возможным. Для определения реальных температур нужна дополнительная информация.

ХОД РАБОТЫ:

На рисунке приведены негативные изображения четырёх экзопланет, обращающихся вокруг молодой звезды с видимой звёздной величиной 6", расположенной на расстоянии 130 световых лет от Солнца. Звезда на снимках экранирована, её положение отмечено звёздочкой. На снимках указаны даты их получения и масштаб: длина полоски соответствует 20 а.е. (20 аи).

Обозначьте планеты на снимках цифрами 1, 2, 3, 4.

Считая орбиты планет круговыми, а плоскость орбит перпендикулярной лучу зрения, определите радиусы орбит. Данные измерений и вычислений занесите в таблицу.

Измерьте расстояние от звезды до планеты с точностью до миллиметра на обоих снимках.

Вычислите среднее значение расстояния от звезды для каждой планеты. Используя заданный масштаб (длина полоски соответствует 20 a.e.), определите расстояние от звезды до планеты в a.e.

Вычислите расстояния до планет в метрах.

Определите абсолютную звёздную величину звезды.

Пла	до звезды на	по звезпы	Радиус ор- биты пла- неты а, а.е.	Температура планеты 7∖ К
1				
2				
3				

4			

Вычислите светимость звезды L, используя формулу (2).

Вычислите светимость звезды L, используя формулу (2).

По формуле (1) определите температуру для каждой планеты. Результаты занесите в таблицу.

Сделайте вывод о возможности наличия жизни земного типа на каждой из планет.

ВОПРОСЫ ЛЯ САМОКОНТРОЛЯ

- 1. Какие методы поиска экзопланет вы знаете? Перечислите их.
- 2. Что такое зона обитаемости?
- 3. Что является необходимым условием возникновения жизни земного типа?

Методические указания к контрольной работе

Указания по оформлению и выбору заданий контрольной работы

Контрольная работа по дисциплине «Астрономия» выполняется в сроки, предусмотренные учебным планом. Контрольная работа включает два задания, которые определяются по таблице. Номера заданий контрольной работы студенты устанавливают по двум последним цифрам личного дела (шифра). В таблице по горизонтали «Б» размещены цифры от 0 до 9, каждая из которых - последняя цифра в шифре. По вертикали «А» также размещены цифры от 0 до 9, каждая из которых - предпоследняя цифра в шифре, например: шифр ТЭ-О-01-18-027. Пересечение второй строки и седьмого столбца определяет номера варианта: 4.

При оформлении контрольной работы на титульном листе указывается фамилия, инициалы студента, курс, специальность, номер (шифр) личного дела и дисциплина «Астрономия». В начале контрольной работы должен быть написан номер варианта, затем перед каждым ответом приводится содержание вопроса с указанием его номера.

В ответе на вопросы нужно проявить умение обобщать изученный материал. Ответы должны быть полными по существу и краткими по форме. Не допускается дословное переписывание материала из учебника и другой литературы.

Содержание работы оформляется разборчивым почерком, страница нумеруется в верхнем углу, на каждой странице оставляются поля для замечаний рецензента. В конце работы приводится список используемой литературы, дата и подпись автора и оставляется место для рецензии.

При положительной рецензии студент допускается к собеседованию, в ходе которого проверяются знания по излагаемым ответам. В случае отрицательной рецензии работа возвращается студенту для доработки. При повторном представлении работы на проверку прилагается и первоначальный вариант с рецензией.

Собеседование по контрольной работе проводится в первые дни экзаменационной сессии в свободное или предусмотренное расписанием время.

При подготовке ответов на вопросы контрольной работы следует пользоваться рекомендованным списком литературы.

Таблица для определения номеров заданий контрольной работы

	Б		Последняя цифра номера личного дела (шифра)								
A		0	1	2	3	4	5	6	7	8	9
ла	0	1	2	3	4	5	6	1	2	3	4
Последняя цифра номера личного дела (шифра)	1	5	6	1	2	3	4	5	6	1	2
оньп	2	3	4	5	6	1	2	3	4	5	6
<u>ера л</u> а)	3	1	2	3	4	5	6	1	2	3	4
ра номе _ј (шифра)	4	5	6	1	2	3	4	5	6	1	2
n) эdфn	5	3	4	5	6	1	2	3	4	5	6
h ввн	6	1	2	3	4	5	6	1	2	3	4
ослед	7	5	6	1	2	3	4	5	6	1	2
$II_{\mathcal{C}}$	8	3	4	5	6	1	2	3	4	5	6

9	1	2	3	4	5	6	1	2	3	4

1.1.Задания контрольной работы

Вариант 1

- 1. Определить экваториальные координаты звёзд: а) δ в созвездии Льва; б) δ в созвездии Андромеды.
- 2. На карту звездного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 31 декабря. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

Вариант 2

- 1. Определить экваториальные координаты звèзд: а) δ в созвездии Большого Пса; δ) δ в созвездии Близнецов.
- 2. На карту звездного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 8 марта. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

Вариант 3

- 1. Определить экваториальные координаты звезд: а) δ в созвездии Весов; δ) δ в созвездии Орион.
- 2. На карту звездного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 21 июня. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

Вариант 4

- 1. Определить экваториальные координаты звезд:
- а) δ в созвездии Волопас; δ) δ в созвездии Голубь.
- 2. На карту звездного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 22 сентября. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

Вариант 5:

- 1. Определить экваториальные координаты звѐзд: а) δ в созвездии Овен; δ) δ в созвездии Водолей.
- 2. На карту звѐздного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 1 мая. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

Вариант 6:

1. Определить экваториальные координаты звèзд: а) δ в созвездии Скорпион; δ) δ в созвездии Пегас.

2. На карту звёздного неба наложить подвижный круг так, чтобы возможно было рассмотреть небо в полночь 22 марта. Рассмотреть открытую часть небесной сферы на карте. Перечислить зодиакальные созвездия, наблюдаемые в эту полночь.

4. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Основная учебная литература

- 1. Воронцов-Вельяминов, Б. А. Астрономия. Базовый уровень: учебник / Б.А. Воронцов-Вельяминов, Е.К. Страут. М.: Дрофа, 2017. 238с.
- 2. Кононович, Э. В. Общий курс астрономии: учебное пособие /Э. В. Кононович, В. И. Мороз.–М.: УРСС, 2016.– 542 с.

Дополнительная учебная литература

3. Доленко, Г. Н. Концепции современного естествознания: Курс лекций /Г.Н.Доленко. – Новосибирск: СибУПК, 2018. – 260с.

5. СОВРЕМЕННЫЕ ПРОФЕССИОНАЛЬНЫЕ БАЗЫ ДАННЫХ И ИНФОРМАЦИОННЫЕ РЕСУРСЫ СЕТИ ИНТЕРНЕТ

- Научная электронная библиотека<u>www.elibrary.ru</u>
- Электронно-библиотечная система: www.znanium.com

Перечень лицензионного программного обеспечения и информационных справочных систем

- Microsoft Power Point 2010,
- Microsoft Windows 7,
- Microsoft Windows 8
- Справочно-правовая система «Консультант Плюс»
- Справочно-правовая система «Гарант»
- Справочно-правовая система «Руслан»