

Автономная некоммерческая образовательная организация высшего образования Центросоюза Российской Федерации «Сибирский университет потребительской кооперации»

УТВЕРЖДАЮ

Проректор по учебной работе

Л.В. Ватлина

28 мая 2025 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для текущего контроля успеваемости и промежуточной аттестации по дисциплине

ОП.01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

по специальности

09.02.13 Интеграция решений с применением технологий искусственного интеллекта

(направленность программы: Применение искусственного интеллекта)

квалификация выпускника:

Специалист по работе с искусственным интеллектом

Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине *«Элементы высшей математики»* разработана в соответствии с требованиями федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта, утвержденного приказом Министерства просвещения Российской Федерации от 24.12.2024 № 1025.

РАЗРАБОТЧИК:

Комиссаров В.В., канд. физ.-мат. наук, доцент кафедры статистики и математики

РЕЦЕНЗЕНТ:

С.Л. Злобина, канд.физ-мат.наук, доцент кафедры статистики и математики

Фонд оценочных средств для текущего контроля успеваемости и промежуточной аттестации по дисциплине «Элементы высшей математики» рассмотрен и одобрен на заседании кафедры статистики и математики, протокол от 28 мая 2025 г. № 9.

И. о. заведующего кафедрой статистики и математики

The

О.А. Чистякова

Раздел 1. «Паспорт оценочных средств»

Оценочные средства для проверки хода освоения дисциплины и достижения планируемых результатов обучения

Результат обучения	Код контроли-	Контролируемые	Наименование
(πο ΦΓΟС)	руемой	разделы (темы) дис-	оценочного
(======)	компетенции	циплины	средства
Умения:		7	-F -M
Выполнять операции	OK 1, OK 5	Тема 1 – 12	ВЭ, 3
над матрицами и ре-	,		
шать системы линей-			
ных уравнений			
Решать задачи, исполь-			
зуя уравнения прямых			
и кривых второго по-			
рядка на плоскости			
Применять методы			
дифференциального и			
интегрального исчис-			
ления			
Решать дифференци-			
альные уравнения			
Пользоваться поняти-			
ями теории комплекс-			
ных чисел			
Знания:			
Основы математиче-	OK 1, OK 5	Тема 1 − 12	ВЭ, 3
ского анализа, линей-			
ной алгебры и анали-			
тической геометрии			
Основы дифференци-			
ального и интеграль-			
ного исчисления			
Основы теории ком-			
плексных чисел			

Условные обозначения:

ВЭ – вопросы экзамену; 3 – задачи

Контролируемые темы дисциплины	Наименова- ние оценочного средства	
Тема 1. Основы теории комплексных чисел	ВЭ, 3	OK 1, OK 5
Тема 2. Теория пределов	ВЭ, 3	OK 1, OK 5
Тема 3. Дифференциальное исчисление функции одной действительной переменной	ВЭ, 3	OK 1, OK 5
Тема 4. Интегральное исчисление функции одной действительной переменной	ВЭ, 3	OK 1, OK 5
Тема 5. Дифференциальное исчисление функции нескольких действительных переменных	ВЭ, 3	OK 1, OK 5
Тема 6. Интегральное исчисление функции нескольких действительных переменных	ВЭ, 3	OK 1, OK 5
Тема 7. Теория рядов	ВЭ, 3	ОК 1, ОК 5
Тема 8. Обыкновенные дифференциальные уравнения	ВЭ, 3	OK 1, OK 5
Тема 9. Матрицы и определители	ВЭ, 3	ОК 1, ОК 5
Тема 10. Системы линейных уравнений	ВЭ, 3	ОК 1, ОК 5
Тема 11. Векторы и действия с ними	ВЭ, 3	OK 1, OK 5
Тема 12. Аналитическая геометрия на плоскости	ВЭ, 3	OK 1, OK 5

Раздел 2. Оценочные средства: текущий контроль

Текущий контроль осуществляется путём опросов и проведения контрольных работ по темам.

Примеры задач для контроля по всем темам

Тема. Матрицы, определители.

1. Найти произведение матриц АВ и ВА:

$$A = \begin{pmatrix} 1 & -2 & 3 & 0 \\ 2 & 1 & -1 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 & -1 \\ 1 & 2 \\ 5 & -1 \\ 3 & 0 \end{pmatrix}.$$

2. Используя правило Саррюса («правило треугольника») найти определитель 3-го порядка:

$$\begin{vmatrix} 3 & -2 & 1 \\ -2 & 1 & 3 \\ 2 & 0 & -2 \end{vmatrix}$$

3. Для заданной матрицы найти обратную и сделать проверку:

$$\begin{pmatrix} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix}$$

Тема . Системы линейных алгебраических уравнений.

4. Решить системы уравнений с помощью обратной матрицы и (или) формул Крамера:

$$\begin{cases} 2x - 4y + 3z = 1 \\ x - 2y + 4z = 3 \\ 3x - y + 5z = 2 \end{cases}$$

Тема. Аналитическая геометрия.

5. Найти собственные числа и собственные векторы матрицы:

$$\begin{pmatrix}
0 & 1 & 0 \\
-3 & 4 & 0 \\
-2 & 1 & 2
\end{pmatrix}.$$

- 6. Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{2}{3}\pi$. Зная, что $|\vec{a}| = 3$ и $|\vec{b}| = 4$, вычис-
- лить: 1) $\vec{a}\vec{b}$; 2) \vec{a}^2 ; 3) \vec{b}^2 ; 4) $(\vec{a}+\vec{b})^2$; 5) $(\vec{3}\vec{a}-2\vec{b})\cdot(\vec{a}+2\vec{b})$; 6) $(\vec{a}-\vec{b})$; 7) $(\vec{3}\vec{a}+2\vec{b})^2$.
- 7. Даны вершины треугольника $M_1(2; 1)$, $M_2(-1; -1)$, $M_3(3; 2)$. Составить уравнения его высот.
- 8. Найти координаты точки пересечения прямой $\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-2}{1}$ с плоскостью 3x y + 2z + 5 = 0, угол между прямой и плоскостью.
- 9. Установить какую линию второго порядка определяет уравнение. Найти все ее характерные величины (центр, вершины, полуоси, параметр,

эксцентриситет, фокусы и т.д.). Изобразить эту линию на чертеже: $9x^2 + 4y^2 + 36x - 24y + 36 = 0$.

Тема . Предел последовательности. Функция и предел функции

10. Найти пределы функций:

$$\lim_{x \to \infty} \frac{x^2 - 7x + 1}{3x^2 + x + 3}; \quad \lim_{x \to 2} \frac{3x^2 - 5x - 2}{2x^2 - x - 6}; \quad \lim_{x \to 0} \frac{tg^2(x)}{\sin(2x)}; \quad \lim_{x \to 0} \frac{tg(x) - \sin(x)}{x^3}; \quad \lim_{x \to \infty} \left(\frac{2x - 3}{2x + 5}\right)^{x - 1}.$$

Тема . Дифференциальное исчисление и его приложения.

11. Найти производные указанных функций:

1)
$$y = x^3 - x^2 / 5 + 2x - 4$$
; 2) $y = \sqrt{x} - \frac{3}{x} + \frac{9}{x^2}$.

12. Средствами дифференциального исчисления найти экстремумы, интервалы монотонности и точки перегиба функции: $y = x^3 - 9x^2 + 24x - 16$;

Тема. Интегральное исчисление и его приложения.

13. Найти неопределённые интегралы, результаты проверить дифференцированием:

$$\int ((x-1)^4 + 3\sin(2x-1))dx; \quad \int xe^{1-2x}dx.$$

16. Найти площадь фигуры, ограниченной данными линиями:

1)
$$x \cdot y = 4$$
, $y = x$, $x = 4$; 2) $y = 3x^2 - 2x + 7$, $y = x + 13$.

Тема. Комплексные числа.

14. Выполнить указанные действия, представить результат в алгебраической, тригонометрической и показательной формах.

$$\frac{(3+2i)(1-4i)}{(4-5i)}, (2+i\sqrt{3})^3.$$

15. Найти все значения корня и изобразить их на комплексной плоскости, представить результат в алгебраической, тригонометрической и показательной формах: $\sqrt[3]{-2+2i}$.

Тема. Дифференциальные уравнения.

- 17. Найти решение задачи Коши: $x^2y' = 2xy + 3$, y(1) = -1.
- 18. Найти частное решение линейного дифференциального уравнения, удовлетворяющее начальным условиям:

$$y'' - 3y' + 2y = 0$$
, $y(0) = 2$, $y'(0) = 3$.

Тема. Функции нескольких переменных.

19. Дана функция $z = 2x^2 + y$, точка A(1; 2) и вектор $\vec{a} = (3; 4)$. Найти: 1) grad(z) в точке A; 2) производную в точке A по направлению вектора \vec{a} .

Описание оценочного материала:

Вид ОМ	Форма предъявления: вопросы / темы.
Вопросы для	Процедура: проводится в виде индивидуального собеседования

собеседования	с обучающ	имся по теме семинарского занятия за 10-15 минут до
по темам	окончания	соответствующего занятия или на консультации.
практических	Шкала оц	енивания /критерии:
занятий		Обучающийся знает теоретический материал,
		терминологию, умеет применять теоретические
	«Зачтено»	знания для объяснения обсуждаемых явлений,
	«Зачтено»	предлагает практические решения обсуждаемых
		проблем на основе синтеза изученного материала и
		личного опыта.
		Обучающийся не освоил теоретический материал, не
	«Не	продемонстрировал умение применять знания для
	зачтено»	решения поставленных задач.
		Обучающийся отказался от ответа.

Раздел 3. Оценочные средства

Промежуточная аттестация обеспечивает оценивание окончательных результатов обучения по дисциплине проводится в форме экзамена в конце семестра.

Вопросы к экзамену

- 1. Матрицы, линейные операции над ними. Единичная матрица.
- 2. Произведение матриц. Возведение матрицы в степень.
- 3. Транспонирование матрицы.
- 4. Определители. Определители матриц 2 и 3 порядков.
- 5. Формула Лапласа.
- 6. Свойства определителей.
- 7. Вычисление определителя матрицы с помощью эквивалентных преобразований.
- 8. Обратная матрица. Необходимое и достаточное условие существования обратной матрицы. Алгоритм вычисления обратной матрицы.
- 9. Системы линейных алгебраических уравнений, матричная форма записи.
- 10. Решение СЛАУ с помощью обратной матрицы.
- 11. Теорема Крамера, формулы Крамера.
- 12. Расширенная матрица системы, эквивалентные преобразования матрицы. Метод Гаусса.
- 13. Ранг матрицы системы. Вычисление ранга матрицы.
- 14. Решение систем линейных алгебраических уравнений. Совместные и несовместные системы.
- 15. Однородные системы. Совместность однородной системы. Условие нетривиальной совместности. Фундаментальная система решений. Общее решение однородных систем.

- 16. Условие совместности. Исследование неоднородной системы. Базисные переменные, свободные переменные. Общее решение. Частное решение. Базисные решения.
- 17. Векторы и операции над ними. Векторы в координатной форме.
- 18. Модуль вектора, направляющие косинусы вектора.
- 19. Условия коллинеарности векторов.
- 20. Базис, линейная зависимость векторов. Разложение вектора по базису.
- 21. Скалярное произведение векторов, свойства скалярного произведения. Угол между векторами.
- 22. Условие ортогональности векторов. Проекция вектора на вектор.
- 23. Векторное произведение векторов, свойства векторного произведения.
- 24. Смешанное произведение векторов, свойства смешанного произведения.
- 25. Системы координат. Декартова, полярная, цилиндрическая система координат, сферическая системы координат.
- 26. Линия на плоскости, явное, неявное, параметрическое задание линии.
- 27. Расстояние между двумя точками. Деление отрезка в заданном отношении.
- 28. Прямая на плоскости. Уравнение прямой с угловым коэффициентом, общее уравнение прямой, каноническое уравнение прямой, параметрическое уравнение прямой, уравнение прямой в отрезках.
- 29. Уравнение прямой, проходящей через две заданные точки, уравнение прямой, проходящей через заданную точку под заданным углом.
- 30. Угол между прямыми.
- 31. Расстояние от точки до прямой.
- 32. Линии второго порядка. Окружность, эллипс, гипербола, парабола.
- 33. Приведение общего уравнения линий второго порядка к каноническому виду.
- 34. Общее уравнение плоскости. Угол между плоскостями. Условие параллельности плоскостей, условие перпендикулярности плоскостей.
- 35. Уравнение прямой в пространстве. Уравнение прямой, проходящей через две точки. Параметрическое уравнение прямой.
- 36. Определение координаты точки пересечения прямой и плоскости.
- 37. Расстояние от точки до плоскости.
- 38. Расстояние от точки до прямой в пространстве.
- 39. Расстояние между скрещивающимися прямыми в пространстве.
- 40. Понятие функции, основные характеристики функции. Обратная функция.
- 41. Числовая последовательность. Ограниченная, неограниченная, монотонная последовательности.
- 42. Предел числовой последовательности. Бесконечно малые и бесконечно большие последовательности.
- 43. Свойства последовательностей.
- 44. Предел функции, односторонние пределы функций.

- 45. Бесконечно малые и бесконечно большие функции. Основные свойства пределов функции, связь между бесконечно малыми и бесконечно большими функциями.
- 46. Теорема о промежуточной функции.
- 47. Первый замечательный предел.
- 48. Второй замечательный предел.
- 49. Основные типы неопределённостей и способы их раскрытия. Эквивалентные бесконечно малые функции.
- 50. Основные эквивалентности.
- 51. Непрерывность функции, точки разрыва и их классификация.
- 52. Теоремы о непрерывных функциях. Приращение функции и аргумента.
- 53. Производная функции, её геометрический и механический смысл.
- 54. Связь между непрерывностью и дифференцируемостью функции.
- 55. Производная суммы, разности, произведения и частного двух функций.
- 56. Производная сложной функции, производная обратной функции.
- 57. Производная функции заданной неявно.
- 58. Производная функции заданной параметрически.
- 59. Производные основных элементарных функций.
- 60. Логарифмическое дифференцирование.
- 61. Производные высших порядков.
- 62. Дифференциал функции, геометрический смысл дифференциала функции.
- 63. Применение дифференциала функции к приближённым вычислениям.
- 64. Теоремы Ролля, Коши, Лагранжа.
- 65. Формула Тейлора и ее приложения.
- 66. Правило Лопиталя.
- 67. Признаки монотонности функции.
- 68. Понятие экстремума функции, необходимое условия экстремума, достаточное условие экстремума.
- 69. Точки перегиба, признаки выпуклости, вогнутости функции.
- 70. Асимптоты графика функции, их нахождение.
- 71. Общая схема полного исследования функции.
- 72. Первообразная функции. Неопределённый интеграл, свойство неопределённого интеграла. Таблица интегралов.
- 73. Основные методы интегрирования: метод непосредственного интегрирования, интегрирование подстановкой, интегрирование по частям, интегрирование рациональных функций, интегрирование тригонометрических функций, интегрирование иррациональных функций.
- 74. Определённый интеграл, его геометрический смысл.
- 75. Основные свойства определённого интеграла.
- 76. Формула Ньютона-Лейбница.
- 77. Несобственные интегралы, их сходимость.
- 78. Вычисление площадей плоских фигур.

- 79. Приближённое вычисление интегралов.
- 80. Определение функции нескольких переменных. Область определения функции нескольких переменных. Способы изображения функции нескольких переменных.
- 81. Передел и непрерывность функции нескольких переменных.
- 82. Частные производные функции нескольких переменных. Геометрический смысл частных производных.
- 83. Дифференциал функции нескольких переменных. Применение дифференциала к приближённым вычислениям.
- 84. Градиент, производная по направлению. Частные производные высших порядков.
- 85. Касательная плоскость и нормаль к поверхности.
- 86. Экстремумы функции нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума функции двух переменных.
- 87. Условный экстремум.
- 88. Наибольшее и наименьшее значение функции в замкнутой области.
- 89. Комплексные числа, модуль, аргумент. Геометрическое представление комплексного числа. Алгебраическая, тригонометрическая, экспоненциальная формы записи. Действия над комплексными числами.
- 90. Обыкновенные дифференциальные уравнения, их общие и частные решения. Задача Коши.
- 91. Дифференциальные уравнения первого порядка с разделяющимися переменными.
- 92. Линейные дифференциальные уравнения.
- 93. Линейные дифференциальные уравнений второго порядка с постоянными коэффициентами.

D OM	Описание оценочного материала		
Вид ОМ	Тема	Перечень вопросов	
Вопросы	Тема 1. Основы теории комплексных чи-	1 – 8	
к экзаме-	сел.		
ну (ВЭ)	Тема 2. Теория пределов		
	Тема 3. Дифференциальное исчисление	9 – 16	
	функции одной действительной перемен-		
	ной.		
	Тема 4. Интегральное исчисление функ-	17 - 34	
	ции одной действительной переменной		
	Тема 5. Дифференциальное исчисление		
	функции нескольких действительных пе-		
	ременных		
	Тема 6. Интегральное исчисление функ-	40 - 50	
	ции нескольких действительных пере-		
	менных		
	Тема 7. Теория рядов.	51 – 71	

Тема 8. Обыкновенные дифференциаль-	72 - 79
ные уравнения.	
Тема 9. Матрицы и определители.	101
Тема 10. Системы линейных уравнений.	102 – 105
Тема 11. Векторы и действия с ними.	80 - 88
Тема 12. Аналитическая геометрия на	84 – 89
плоскости	

Раздел 4. Методические материалы Основная учебная литература

- 1. Бардушкин В.В., Прокофьев А. А. Математика. Элементы высшей математики: учебник: в 2 т. Т. 1 / В.В. Бардушкин, А.А. Прокофьев. М.: КУРС, НИЦ ИНФРА-М, 2017. 304 с. (Среднее профессиональное образование). Режим доступа: http://znanium.com/catalog/product/61510.
- 2. Математика. Сборник задач : учебное пособие / В. В. Комиссаров, Е. А. Левина, М. Н. Пешкова, А. А. Яковлева. АНОО ВО Центросоюза РФ «СибУПК». Новосибирск, 2020. 100 с.

Дополнительная учебная литература

- 3. Григорьев В.П. Сборник задач по высшей математике: Учеб. пособие для студентов учрежд. СПО / В.П. Григорьев, Т.Н. Сабурова. М.: Издательский центр «Академия», 2014. 160 с.
- 4. Математика. Сборник задач : учебное пособие / В. В. Комиссаров, Е. А. Левина, М. Н. Пешкова, А. А. Яковлева. АНОО ВО Центросоюза РФ «СибУПК». —Новосибирск, 2019. 100 с. электронный ресурс